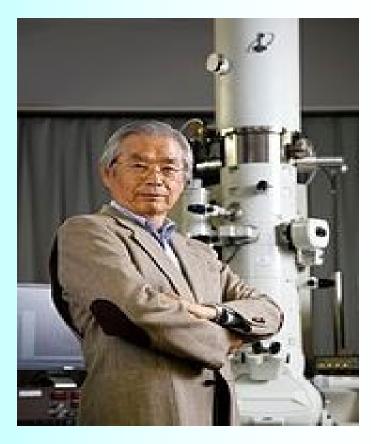
CNTS NANOSTRUCTURED MATERIALS



Dr.C MARIA MAGDALANE Dept. of Chemistry St.Xaviers College Palayamkottai

Carbon Nanotubes (CNTs)

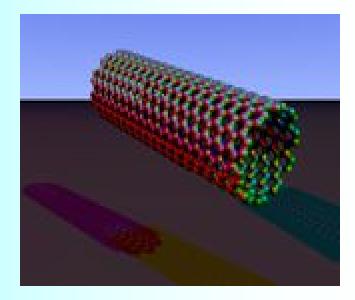
CNTs are allotrope of carbon.

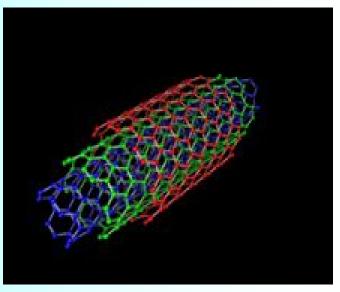
CNTs discovered in 1991 by the Japanese electron microscopist, **Iijima**, while studying the **arc** - **evaporation synthesis of fullerenes**.

TYPES OF CNTs

There are two types of nanotubes;

1) Single Walled Carbon Nanotubes (SWCNTs)

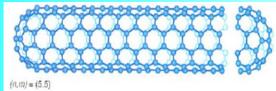

2) Multi Walled Carbon Nanotubes (MWCNTs)


SWCNTHerea singlelayerofgraphenerolledthemselvestoform tube shape.

MWCNT

Here a multiple layers of graphene rolled themselves to form tube shape.

They have a diameter of few nm with a tube length of few μm.



Structures of CNTs

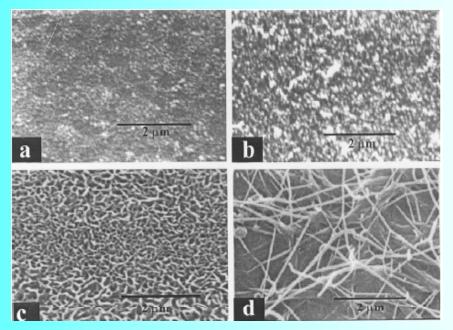
How the carbon atoms are arranged in CNTs

The **hexagon flat sides** lie along the long axis of the tube.

SYNTHESIS OF CNTs

- Carbon nanotubes are generally produced by the following techniques
- 1. Arc discharge method
- 2. Plasma assisted CVD method
- 3. Electrochemical method

Electrochemical method


This method is used to synthesis CNTs at room temperature, without using any metal catalysts.

> In this method, 1 vol. % of acetonitrile (CH_3CN) in deionized water is used as the electrolyte.

The deposition will take place under the voltage of 15-20 V at room temperature.

> The growth of the CNTs on the substrate was monitored by SEM.

➤ The carbon film obtained at intermediate times was found to be in its amorphous phase, which is subsequently converted into CNTs at 4hr.

SEM microstructures of the films on tin-oxide coated glass deposited for (a) t=1 h (b) t=2 h (c) t=3 h and (d) t=4 h

Mechanism

>CH₃⁺ radicals are formed from acetonitrile in the electrochemical process is involved to form of amorphous carbon.

$$CH_3CN+H_2O \longrightarrow CH_3^+ + CN^- + H^+ + OH^-$$

The dehydrogenation of carbon formed from CH_3^+ radicals can be predicted thro' the following reactions;

CH3 ⁺ + CH3 ⁺ +2e		$CH_2=CH_2+H_2$
nCH ₂ =CH ₂	\rightarrow	$[-CH_2CH_2 -]_n$
[-CH ₂ CH ₂ -] _n	\rightarrow	C_n+2nH_2

PURIFICATION OF CNTs

➤CNTs prepared by various methods contain impurities such as amorphous carbon, smaller fullerenes and metal catalyst etc.

>These impurities will affect the properties of CNTs.

≻Hence, purification process is required for the prepared CNTs.

PHYSICAL PROPERTIES OF CNTs

Mechanical properties

- CNTs are the strongest and stiffest materials due to its C-C bond strength.
- > Its tensile strength is about **150 GPa**.
- It is about 30-40 times stronger than steel.

Electrical properties

CNTs can have an electrical conductivity 1000 times higher than silver and copper.

Thermal properties

- CNTs can have thermal conductivity 15 times higher than copper in room temperature.
- CNTs have thermal stability up to 2800°C in vacuum.
- **But, its thermal stability is up to 625°C** in air.

Optical properties

- CNTs have a band gap ranging from 0.4 to 0.7 eV.
- Its band gap depends on its diameter.

CHARACTERIZATION TECHNIQUES FOR NANOSTRUCTURED MATERIALS

Studies	Information
TG/DTA	Phase formation and/or complete crystallization temperature
XRD	Phase analysis and Crystallinity
FTIR	Structural conformation
UV-Visible	Structural conformation
FE-SEM	Surface morphology and Average particle size
HR-TEM	Particle size and microstructure
DRS	Band gap determination
BET	Specific surface area
AC-Impedance	Ionic conductivity

